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Preliminaries

What is the multi-armed bandit (MAB) problem?

In the MAB problem, an agent must choose to pull one of n available
arms. Each arm has a reward distribution associated with it. These
distributions are fixed but unknown.

We study the regret minimization setting for Bernoulli bandits.

Expected regret is defined as:

E [R(T )] = µ∗T − E [
T∑
t=1

r(t)]

where R(T ) is the cumulative regret in T time steps and r(t) is the
reward received in the tth time step

We wish to design algorithms aimed at minimizing this quantity.
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Previous Work (1)

Lai and Robbins (1985) gave lower bounds on regret for all bandit
algorithms:

E [R(T )] ≥ [Σi :µi<µ∗
∆i

D(µi ||µ∗)
+ o(1)]lnT

where D is KL divergence

Some popular algorithms that match the lower bound are UCB1 and
Thompson Sampling.
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Previous Work (2)

Upper bound on expected regret for UCB1 from Auer et al. (2002):

E [R(T )] ≤ 8[Σi :µi<µ∗
lnT

∆i
] + (1 +

π2

3
)(ΣK

j=1∆j)

Upper bound on expected regret of Thompson Sampling from
Kaufmann et al. (2012):

E [R(T )] ≤ (1 + ε)Σi :µi<µ∗
∆i (ln(T ) + ln(ln(T )))

D(µi ||µ∗)
+ C (ε, µ1, .., µn)

where ε and C are problem dependent constants
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Key Idea - Persistence

A bandit algorithm is a map from the whole history of arms pulled
and rewards observed to an arm choice or a probability distribution
over arms

Given a history, a bandit algorithm will return an arm or a distribution
over arms.

We can add ’Persistence’ to any bandit algorithm.

In the persistence variant of any bandit algorithm, whenever one gets
a 1 reward, they stick with their choice for the next time instance
ignoring the rest of the history.
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Persistence - Pseudocode

Algorithm 1 Persistence Variant of Bandit Algorithm

1: n← Number of Arms
2: T ← Time Horizon
3: for i = 1 to n do
4: true reward distribution[i ]← Bernoulli(µi )

5: reward history ← [ ]
6: action history ← [ ]
7:

8: r ← 0
9: for i = 1 to T do

10: if r == 0 then //remove this condition − > regular bandit algorithm

11: action choice ← bandit algorithm(action history , reward history)

12: r ← sample(true reward distribution[action choice])
13: reward history ← reward history .append(r)
14: action history ← action history .append(action choice)
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Persistence - Intuition

Why should persistence work?

The intuition behind persistence is that it will lead to arms with
higher means being pulled more often and hence result in lower regret.

When an arm with mean µi is picked, in expectation, with
persistence, it will be picked 1

1−µi times before the next decision
needs to be made about which arm to pick.

Therefore, with persistence we expect the better arms to be picked
more often and hence incur lesser regret as compared to the regular
variant.
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Empirical Results

Our experiments are done for the two-armed case because, usually,
analysis of the two-armed bandit can be generalised to the n-armed
bandit.

We wish to examine how ‘persistence’ influences the performance of
various bandit algorithms.

For ε-greedy, we use a constant value of ε. In our experiments, we
keep ε = 0.05. It picks the arm with the highest empirical mean with
probability 1− ε, and a random arm with ε.

The other algorithm we run experiments for is Thompson Sampling.
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Graphs for ε-greedy (1)

Table: Regret for (0.3, 0.1) Horizons = 100, 1000 and 10000; Orange =
Persistence; Blue = Regular
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Graphs for ε-greedy (2)

Table: Regret for (0.8, 0.6) Horizons = 100, 1000 and 10000; Orange =
Persistence; Blue = Regular
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Graphs for ε-greedy (3)

Table: Regret for (0.99, 0.98) Horizons = 100, 1000 and 10000; Orange =
Persistence; Blue = Regular
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For ε-greedy

We can clearly see that throughout these graphs, persistent ε-greedy
outperforms regular ε-greedy

At least empirically, it seems clear that persistence improves ε-greedy
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Graphs for Thompson Sampling (1)

Table: Regret for (0.7, 0.2) Horizons = 100, 1000 and 10000; Orange =
Persistence; Blue = Regular
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Graphs for Thompson Sampling (2)

Table: Regret for (0.8, 0.6) Horizons = 100, 1000 and 10000; Orange =
Persistence; Blue = Regular
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Graphs for Thompson Sampling (3)

Table: Regret for (0.99, 0.79) Horizons = 50, 100 and 500; Orange =
Persistence; Blue = Regular
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Graphs for Thompson Sampling (4)

Table: Regret for (0.99, 0.89) Horizons = 10, 106 and 108; Orange = Persistence;
Blue = Regular
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For Thompson Sampling

Here, we observe that for instances where both means aren’t very
high, the persistence version outperforms the regular version.

On the other hand, for those instances, we observe a ’slump’ in
Graphs (3) and (4).

We notice that the higher the two arms’ means are, the longer is the
slump.

But, for large enough time horizon, the persistence version again
starts to outperform the regular version.
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Theoretical Guarantees (1)

For ε-greedy, we prove that we are in something called a ’bad’ state
at most for a constant number of time steps.

We define a ’good’ state as a state in which the arm with the highest
empirical value is indeed the one with the highest true mean.

If this is not the case, we are in a ’bad’ state.

We prove that, whenever we are in a good state, in expectation, the
regret incurred is lower for the persistence variant.

Together, these two statements are enough to say that, in
expectation, the persistence variant does better than the regular
variant beyond a certain horizon.

We’ll do all our analysis for the two-armed case because, usually,
analysis of the two-armed bandit problem can be generalised to the
n-armed bandit.
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Theoretical Guarantees (2)

Without loss of generality, let us assume that the two arms have
means µ1 and µ2 with µ1 > µ2. Let ∆ = µ1 − µ2

Fact 1 Hoeffding’s Inequality: Let X1, ...,Xt be i.i.d random variable
bounded by the interval [0, 1] and such that µ = E [Xi ] and
M(k) = (X1 + ...+ Xk)/k

P(M(k)− µ ≥ c) ≤ e−2kc2

where c ≥ 0
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Theoretical Guarantees: For the regular version (1)

At any given time t, in expectation, at least εt/2 pulls of each arm
have been made.

Using Fact 1 for the rewards of arm 2, with c = ∆/2 and k = εt/2,

P(M2(t)− µ2 ≥ ∆/2) ≤ e−εt∆2/4

=> P(M1(t) < M2(t)) ≤ e−εt∆2/4

This is the probability of being in a ’bad’ state in ε-greedy at time t.
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Theoretical Guarantees: For the regular version (2)

Let the expected number of times this event happens till time T be
k2(T ).

k2(T ) ≤ ΣT
t=1e

−εt∆2/4

k2(T ) ≤ e−ε∆
2/4 − e−ε(T+1)∆2/4

1− eε∆2/4
≤ e−ε∆

2/4

1− eε∆2/4

For at least T − k2(T ) decision times, we are in a good state.

In a good state, the expected regret in one time step is:

ε
∆

2
(1)
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Theoretical Guarantees: For the persistence version (1)

The analysis is going to be similar but we are going to only look at
the times when compound pulls are made i.e. our time scale, instead
of looking at each pull, will now look at only the time when a new
decision needs to be made.

Note that, after arm i is chosen, in expectation it will get pulled 1
1−µi

times before a new choice needs to be made. Here, time t represents
the time when the tth choice is made.
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Theoretical Guarantees: For the persistence version (2)

Now, at any given time t, in expectation, at least εt/2 compound
pulls of each arm have been made.

Using Fact 1 for the rewards of arm 2, with c = ∆/2 and
k = ε t

2(1−µ2) ,

P(M2(t)− µ2 ≥ ∆/2) ≤ e
−ε t

1−µ2
∆2/4

=> P(M1(t) < M2(t)) ≤ e
−ε t

1−µ2
∆2/4

This is the probability of being in a ’bad’ state in persistent ε-greedy
at time t.
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Theoretical Guarantees: For the persistence version (3)

Let the expected number of times this event happens till time T be
k2(T ).

k2(T ) ≤ ΣT
t=1e

−ε t
1−µ2

∆2/4

k2(T ) ≤ e
− ε

1−µ2
∆2/4 − e

−ε T+1
1−µ2

∆2/4

1− e
− ε

1−µ2
∆2/4

≤ e
− ε

1−µ2
∆2/4

1− e
− ε

1−µ2
∆2/4

For at least T − k2(T ) decision times, we are in a good state.

In a good state, the expected regret per time step (the actual time,
not the ’compound’ time) is:

ε∆
2(1−µ2)

ε
2(1−µ2) + 1−ε/2

1−µ1

(2)
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Theoretical Guarantees (3)

Comparing (2) and (1):

(1)− (2) = ε
∆

2
−

ε∆
2(1−µ2)

ε
2(1−µ2) + 1−ε/2

1−µ1

=
ε∆

2
[1−

1
1−µ2

ε
2(1−µ2) + 1−ε/2

1−µ1

]

=
ε∆

2
[

1−ε/2
1−µ1

− 1−ε/2
1−µ2

ε
2(1−µ2) + 1−ε/2

1−µ1

] ≥ 0
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Theoretical Guarantees (4)

Clearly, (2) is less than (1).

Therefore, except at ’bad’ states which occur only finitely many
times, the average regret incurred is lesser in persistent ε-greedy.

Therefore, beyond a certain horizon, persistent ε-greedy is going to be
better than regular ε-greedy.
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Discussion: Thompson Sampling (1)

For Thompson Sampling the picture is a little more complicated.

For most problem instances, the persistence variant outperforms the
regular version consistently. (Graphs (1) and (2)).

There is a small set of problematic instances, though, where both µ1

and µ2 are high.

For such instances, the persistence variant has a ’slump’ between
some t1 and t2 compared to the regular version (Graphs (3) and (4)).

Our observations suggest that t1 keeps decreasing and t2 keeps
increasing as µ1 and µ2 become even higher.

We hypothesize that, for any bandit instance (µ1, µ2), there exists, a
time that is a function of µ1 and µ2, beyond which the persistence
outperforms the regular version even for the harder instances.
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Discussion: Thompson Sampling (2)

Why does this ’slump’ occur?

The algorithm has 1/2 probability of picking the µ2 arm in the 1st

time step.

If µ2 is high and the persistence version has been deployed, this arm
will end up being pulled a lot in the beginning ( 1

1−µ2
times in

expectation) updating its beta parameters to indicate a high mean for
arm 2 with high certainty.

This lowers the probability of µ1 arm being pulled and ensures that
the higher mean of the µ1 arm is discovered at a much later time.

This means that with 1/2 probability the persistence algorithm can
reach a local minima and remain stuck there for a while.
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Discussion: Thompson Sampling (3)

Things aren’t that bad though.

This only happens when the suboptimal arm has a high mean too.

Therefore, the regret incurred, is only slightly more than that of the
regular version.
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Future Work

There are many potential directions for future research.

First, theoretical guarantees need to be proved for Thompson
Sampling.

We wish to prove in the future that, in expectation, Persistent
Thompson Sampling has lesser regret than Regular Thompson
Sampling for problem instance dependent time horizons.

The analysis needs to be extended to the n armed bandit.

A family of persistence algorithms can be looked at, where the
maximum persistence, i.e. the maximum time one can go without
making a new decision, is a parameter. This parameter can be
constant or a variable.

Making persistence robust to all problem instances.
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Miscellaneous

Other things we worked on:

Tighter bounds on Thompson Sampling

The Batch Bandit problem

Discrete Support Thompson Sampling

Binary Bandits

Open Loop Algorithm

December 4, 2019 31 / 31


