
BTP - I

Developing and analyzing algorithms for
the Multi-armed Bandit

Sanit Gupta

Supervised by: Prof. Shivaram Kalyanakrishnan

Indian Institute of Technology Bombay

Mumbai 400 076

Contents

1 Problem Description 1

2 Key Idea - Persistence 2

3 Empirical Results 3

4 Theoretical Guarantees and Discussion on Empirical Results 7

5 Future Work 9

6 Miscellaneous 11

7 References 12

i

1 Problem Description

In the multi-armed bandit problem, an agent must choose to pull one of n available

arms. Each arm has a reward distribution associated with it. These distributions

are fixed but unknown.

We study the bernoulli bandit problem where each the reward distribution for

each arm i is assumed to be a bernoulli distribution with parameter µi.

We study the regret minimization setting for the MAB problem. Regret is

defined as how much better in terms of cumulative reward one could have done on

the bandit instance. The expected regret can be written as:

E[R(T)] = µ∗T − E[
T∑
t=1

r(t)]

where R(T) is the cumulative regret in T time steps and r(t) is the reward received

in the tth time step

Previously, Lai and Robbins [LR85] gave lower bounds on regret for all bandit

algorithms:

E[R(T)] ≥ [Σi:µi<µ∗
∆i

D(µi||µ∗)
+ o(1)]lnT

where D is KL divergence

Some popular algorithms for this setting that match the lower bound are UCB1

and Thompson Sampling.

Upper bound on expected regret for UCB1 from [ACF02]:

E[R(T)] ≤ 8[Σi:µi<µ∗
lnT

∆i

] + (1 +
π2

3
)(ΣK

j=1∆j)

Upper bound on expected regret of Thompson Sampling from [KKM12]:

E[R(T)] ≤ (1 + ε)Σi:µi<µ∗
∆i(ln(T) + ln(ln(T)))

D(µi||µ∗)
+ C(ε, µ1, .., µn)

where ε and C are problem dependent constants

1

2 Key Idea - Persistence

Algorithm 1 Persistence Variant of Bandit Algorithm

1: n← Number of Arms

2: T ← Time Horizon

3: for i = 1 to n do

4: true reward distribution[i]← Bernoulli(µi)

5: reward history ← []

6: action history ← []

7:

8: r ← 0

9: for i = 1 to T do

10: if r == 0 then //remove this condition − > regular bandit algorithm

11: action choice← bandit algorithm(action history, reward history)

12: r ← sample(true reward distribution[action choice])

13: reward history ← reward history.append(r)

14: action history ← action history.append(action choice)

A bandit algorithm is a map from the whole history of arms pulled and rewards

observed to an arm choice or a probability distribution over arms i.e. given a history,

it will return an arm or a distribution over arms. ’bandit algorithm’ mentioned in

Algorithm 1 is such an algorithm.

We can add ’Persistence’ to any bandit algorithm. In the persistence variant

of any bandit algorithm, the only difference with the regular version is that in the

persistence version whenever one gets a 1 reward, they stick with their choice for

the next time instance. In Algorithm 1, line 10 is what makes it persistent. If line

10 was absent, this would simply be a regular bandit algorithm.

Why should persistence work? The intuition behind persistence is that it will

lead to arms with higher means being pulled more often and hence result in lower

regret. When an arm with mean µi is picked, in expectation, with persistence, it

will be picked 1
1−µi times before the next decision needs to be made about which arm

to pick. So, with persistence we expect the better arms to be picked more often

and hence incur lesser regret as compared to the regular variant of most bandit

algorithms.

2

3 Empirical Results

Our experiments are done for the two-armed case because usually analysis of the

two-armed bandit problem can be generalised to the n-armed bandit. We wish to

examine how ‘persistence’ influences the performance of various bandit algorithms.

For ε-greedy [Wat89], we use a constant value of ε. In our experiments, we keep

ε = 0.05. It picks the arm with the highest empirical mean with probability 1− ε,
and a random arm with ε.

Graphs for ε-greedy:

Throughout these graphs, it can be seen that persistence is doing better than the

regular version.

Table 1: Regret for (0.3, 0.1) Horizons = 100, 1000 and 10000; Orange = Persistence; Blue = Regular

3

Table 2: Regret for (0.8, 0.6) Horizons = 100, 1000 and 10000; Orange = Persistence; Blue = Regular

Table 3: Regret for (0.99, 0.98) Horizons = 100, 1000 and 10000; Orange = Persistence; Blue = Regular

4

Graphs for Thompson Sampling:

Here, we observe that for instances where both means aren’t very high, the per-

sistence version outperforms the regular version. On the other hand, for those

instances we observe a ’slump’ in Tables 6 and 8. The higher the two arms’ means

are, the longer is the slump. But, for large enough time horizon, the persistence

version again starts to outperform the regular version.

Table 4: Regret for (0.7, 0.2) Horizons = 100, 1000 and 10000; Orange = Persistence; Blue = Regular

Table 5: Regret for (0.8, 0.6) Horizons = 100, 1000 and 10000; Orange = Persistence; Blue = Regular

5

Table 6: Regret for (0.99, 0.79) Horizons = 50, 100 and 500; Orange = Persistence; Blue = Regular

Table 7: Regret for (0.99, 0.79) Horizons = 1000, 5000 and 10000; Orange = Persistence; Blue = Regular

Table 8: Regret for (0.99, 0.89) Horizons = 10, 106 and 108; Orange = Persistence; Blue = Regular

6

4 Theoretical Guarantees and Discussion on Em-

pirical Results

For ε-greedy, we prove that we are in something called a ’bad’ state at most for

a constant number of time steps. We define a ’good’ state as a state where the

arm with the highest expected value given the history indeed is the one with the

highest mean. If this is not the case, we are in a ’bad’ state. Also, we prove that,

whenever we are in a good state, in expectation, the regret incurred is lower for

the persistence variant than the regular one. Together, these two statements are

enough to say that, in expectation, the persistence variant does better than the

regular variant beyond a certain horizon.

We’ll do all our analysis for the two-armed case because usually analysis of the

two-armed bandit problem can be generalised to the n-armed bandit. Without loss

of generality, let us assume that the two arms have means µ1 and µ2 with µ1 > µ2.

Let ∆ = µ1 − µ2

Fact 1 Hoeffding’s Inequality: Let X1, ..., Xt be i.i.d random variable bounded by

the interval [0, 1] and such that µ = E[Xi] and M(k) = (X1 + ...+Xk)/k

P (M(k)− µ ≥ c) ≤ e−2kc2

where c ≥ 0

For the regular version:

At any given time t, in expectation, at least εt/2 pulls of each arm have been

made. Using Fact 1 for the rewards of arm 2, with c = ∆/2 and k = εt/2,

P (M2(t)− µ2 ≥ ∆/2) ≤ e−εt∆
2/4

=> P (M1(t) < M2(t)) ≤ e−εt∆
2/4

This is the probability of being in a ’bad’ state in ε-greedy at time t. Let the

expected number of times this event happens till time T be k2(T).

k2(T) ≤ ΣT
t=1e

−εt∆2/4

k2(T) ≤ e−ε∆
2/4 − e−ε(T+1)∆2/4

1− eε∆2/4
≤ e−ε∆

2/4

1− eε∆2/4

Therefore, for at least T − k2(T) decision times, we are in a good state. In a

good state, the expected regret in one time step is:

ε
∆

2
(1)

7

Now, for the persistence version:

The analysis is going to be similar but we are going to only look at the times

when compound pulls i.e. our time scale, instead of looking at each pull, will now

look at only the time when a new decision needs to be made. Note that, after arm

i is chosen, in expectation it will get pulled 1
1−µi times before a new choice needs to

be made. Here, time t represents the time when the tth choice is made.

Now, at any given time t, in expectation, at least εt/2 compound pulls of each

arm have been made. Using Fact 1 for the rewards of arm 2, with c = ∆/2 and

k = ε t
2(1−µ2)

,

P (M2(t)− µ2 ≥ ∆/2) ≤ e
−ε t

1−µ2
∆2/4

=> P (M1(t) < M2(t)) ≤ e
−ε t

1−µ2
∆2/4

This is the probability of being in a ’bad’ state in persistent ε-greedy at time t. Let

the expected number of times this event happens till time T be k2(T).

k2(T) ≤ ΣT
t=1e

−ε t
1−µ2

∆2/4

k2(T) ≤ e−ε∆
2/4 − e−ε

T+1
1−µ2

∆2/4

1− eε∆2/4
≤ e−ε∆

2/4

1− eε∆2/4

Therefore, for at least T − k2(T) decisions, we are in a good state. In a good

state, the expected regret per time step (the actual time, not the ’compound’ time)

is:
ε∆

2(1−µ2)

ε
2(1−µ2)

+ 1−ε/2
1−µ1

(2)

Comparing (2) and (1):

(1)− (2) = ε
∆

2
−

ε∆
2(1−µ2)

ε
2(1−µ2)

+ 1−ε/2
1−µ1

=
ε∆

2
[1−

1
1−µ2

ε
2(1−µ2)

+ 1−ε/2
1−µ1

]

=
ε∆

2
[

1−ε/2
1−µ1 −

1−ε/2
1−µ2

ε
2(1−µ2)

+ 1−ε/2
1−µ1

] ≥ 0

Clearly, (2) is less than (1). Therefore, except at ’bad’ states which occur only

finitely many times, the average regret incurred is lesser in persistent ε-greedy.

8

Therefore, beyond a certain horizon, persistent ε-greedy is going to be better than

regular ε-greedy.

From our experiments: We see that for ε-greedy, for all problem instances and

all horizons we run experiments at, the persistence variant outperforms the regular

one. We can see this in Table 1 to Table 3.

On the other hand, for Thompson Sampling the picture is a little more compli-

cated. For most problem instances, the persistence variant outperforms the regular

version consistently (Tables 4 and 5). There is a small set of problem instances,

though, where both µ1 and µ2 are high. For such instances, the persistence variant

has a ’slump’ compared to the regular version (Tables 6 - 8). Between some t1 and

t2, the regular version performs better. Our observations suggest that t1 keeps de-

creasing and t2 keeps increasing when µ1 and µ2 become even higher. For example,

the slump for (0.99, 0.89) starts earler and ends later than the one of (0.99, 0.79).

We hypothesize that, for any bandit instance (µ1, µ2), there exists, a time that is a

function of µ1 and µ2, beyond which the persistence outperforms the regular version

even for the harder instances.

Why does this ’slump’ occur? The algorithm has 1/2 probability of picking the

µ2 arm in the 1st time step. If µ2 is high and the persistence version has been

deployed, this arm will end up being pulled a lot in the beginning (1
1−µ2 times in

expectation) updating its beta parameters to indicate a high mean for arm 2with

high certainty. This lowers the probability of µ1 arm being pulled and ensures that

the higher mean of the µ1 arm is discovered at a much later time. This means that

with 1/2 probability the persistence algorithm can reach a local minima and remain

stuck there for a while. But, things aren’t that bad, because this only happens when

the second arm has a high mean too, and so the regret incurred, is only slightly

more than that of the regular version.

5 Future Work

There are many potential directions for future research. First, theoretical guaran-

tees need to be proved for Thompson Sampling. We wish to prove in the future

that, in expectation, Persistent Thompson Sampling has lesser regret than Regular

Thompson Sampling for problem instance dependent time horizons.

A family of persistence algorithms can be looked at, where the maximum per-

sistence, i.e. the maximum time one can go without making a new decision, is a

9

parameter. This parameter can be constant or a variable.

10

6 Miscellaneous

Other things we worked on:

- Tighter bounds on Thompson Sampling: We looked at the two armed prob-

lem as a markov chain and tried to get a handle on the regret by looking at ana-

lytically computed probabilities of ending up in different states. It was extremely

complex because of the complicated expression for probabilities of arm choices from

a given state but it did give us the exact expected regret for the simple (1, 0) bandit.

- The Batch Bandit problem, where the next b pulls need to be decided simul-

taneous. We had promising experimental results, but we couldn’t get the bounds

as tight as we wanted them.

-Experiments on persistence family of algorithms with fixed persistence and

with persistence increasing by addition or multiplication by a constant when the

previous limit is reached.

- Discrete Support Thompson Sampling where instead of using Beta distribu-

tions as priors for the arms we used distributions over candidate arm values with

varying discretization between 0 and 1, e.g. (0, 0.01, 0.02, 0.03...0.99, 1). This

discretization outperformed regular Thompson sampling for all our experiments.

- Binary Bandits - Similar to discrete support, here the support distribution is

over the two arms (µ1, µ2). This setting was easier to deal with analytically com-

pared to regular Thompson Sampling because the arm choice probabilities given a

state is a function which is easy to compute. We were able to show that, in expec-

tation, probability of choosing optimal arm would increase from any state.

- Open Loop Algorithm - Here, when a choice is made for an arm to be pulled,

another choice is made about how long to pull the arm for. This algorithm has

promising empirical results. We haven’t looked into this theoretically yet.

11

7 References

[LR85] T.L Lai and Herbert Robbins. “Asymptotically Efficient Adaptive Al-

location Rules”. In: Adv. Appl. Math. 6.1 (Mar. 1985), pp. 4–22. issn:

0196-8858. doi: 10.1016/0196-8858(85)90002-8. url: http://dx.

doi.org/10.1016/0196-8858(85)90002-8.

[Wat89] C.J.C.H. Watkins. “Learning from Delayed Rewards”. In: Ph.D. Thesis,

University of Cambridge, Cambridge (1989).

[ACF02] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. “Finite-time Analy-

sis of the Multiarmed Bandit Problem”. In: Machine Learning 47.2 (May

2002), pp. 235–256. issn: 1573-0565. doi: 10.1023/A:1013689704352.

url: https://doi.org/10.1023/A:1013689704352.

[KKM12] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. “Thompson Sam-

pling: An Asymptotically Optimal Finite Time Analysis”. In: (2012).

eprint: arXiv:1205.4217.

12

